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Abstract
We study the behavior of information spreading in the XY model, using out-of-time-order
correlators (OTOCs). The effects of anisotropic parameter γ and external magnetic field λ

on OTOCs are studied in detail within thermodynamical limits. The universal form which
characterizes the wavefront of information spreading still holds in the XY model. The butterfly
speed vB depends on (γ, λ). At a fixed location, the early-time evolution behavior of OTOCs
agrees with the results of the Hausdorff–Baker–Campbell expansion. For long-time evolution,
OTOCs with local operators decay as for power law t−1, but those with nonlocal operators show
different and nontrivial power law behaviors. We also observe temperature dependence for
OTOCs when (γ=0, λ=1). At low temperature, the OTOCs with nonlocal operators show
divergence over time.
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1. Introduction

Chaos is an interesting phenomenon in nature, and has
attracted a lot of attention in the fields of condensed matter
theory, quantum information theory, and high energy theory.
A feature of chaos is the butterfly effect, which characterizes
the chaos of a system as ~ le tL [1]. The Lyapunov exponent
λL is unbounded for classical systems. For quantum systems,
a conjecture was recently proposed which established a bound
l p  k T2L B on strong quantum chaos [2]. This new
conjecture encouraged further study of chaos as it relates to
both high energy theory [3, 4] and condensed matter theory
[5–9].

Quantum chaos theory in a quantum many-body system
can be characterized by the out-of-time order correlator
(OTOC) of the two related operators W and V. Let us consider
the following ‘commutator function’ first.

= á ñC l t W l t V W l t V,
1

2
, , 0 , , 0 , 1( ) [ ( ) ( )] [ ( ) ( )] ( )†

here á ñ º á ñ á ñb b- -... e ... eH H denotes the thermal average at
temperature T=1/β and º -W l t W l, e eHt Hti i( ) ( ) . l is

the position of operator W, H is the Hamiltonian of the sys-
tem. Assuming operators W and V are both unitary and
Hermitian, we can rewrite C(l, t)=1−Re[F(l, t)]. Here,

= á ñF l t W l t V W l t V, , 0 , 0( ) ( ) ( ) ( ) ( ) denotes the so-called
OTOC for special time ordering. It captures critical infor-
mation different from the two-point correlation function. The
OTOC can also be understood as the measurement of delo-
calization of spreading operators. It attracts a lot of attention
not only because of its richness in terms of theoretical phy-
sics, but also because of its feasibility in experiments [10–15].

The behavior of OTOC has several interesting aspects.
For example, the early-time behavior of the OTOC can
usually be characterized by the Hausdorff–Baker–Campbell
(HBC) formula. Around the wavefront of the spreading
operators, there is a conjectured universal form describing the
ballistic broadening of the OTOC [16, 17]
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- +
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here, c is constant and vB is the spreading velocity of the
butterfly effect, which is decided by setting the velocity-
dependent Lyapunov exponents λL(vB)=0. p is a coefficient
related to models. For instance, p=1 for a random circuit
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model [18–20], p=1/2 for a non-interacting translation-
invariant model [16, 21, 22], p=0 for a Sachdev–Ye–Kitaev
(SYK) model [23], and chains of coupled SYK dots at large N
[24]. The long-time aspect of OTOC also exhibits interesting
behavior, which may reveal important information about how
operators saturate bound chaos.

In order to understand how information spreads quanti-
tatively, calculation of the OTOC in different systems,
including integrable, or chaotic systems, is an appropriate
place to begin. Recently, some work have been done to
analyze the OTOC in conformal field theories [25–29],
quantum phase transition [30, 31], Luttinger liquids [32], and
also lattice integrable models such as the quantum Ising chain
[33], the hard-core boson model [21], quadratic fermions [34],
the random field XX spin chain [35], and the symmetric
Kitaev chain [36]. Scrambling was observed at the critical
point of the Ising spin chain. Weak chaos was also witnessed
in some models [37].

It is well known that both the quantum Ising model and
the XX model can be seen as special cases of the XY model
[38]. This contains an anisotropic parameter γ that denotes the
difference of components in the x and y direction for coupling
of the two nearest neighbours. This feature accords the XY
model several nontrivial quantum phase transitions and
properties [39]. Therefore, it is interesting to study OTOCs in
the XY model in order to learn how operators grow or how
information scrambles.

In this paper we focus on the evolution of OTOCs in the
XY model. We find that butterfly velocity is dependent on γ

and λ, and that the universal form (2) holds for OTOCs in the
XY model. We also study the early-time and long-time
behavior of OTOCs. While the former is characterized by the
HBC formula, the latter displays quite interesting and unusual
power law behaviours. Moreover, we observe an interesting
temperature dependence in OTOCs in particular cases.

This paper is organized as follows: we introduce the XY
model in section 2, including its quantum phase transition,
and procedures to diagonalize the Hamiltonian. In section 3,
the calculation method of OTOC will be outlined. Next, we
will show the exact evolutions of OTOCs with respect to time
and location, and extract the information from them. Finally,
in section 4 we will briefly discuss these results and conclude.

2. XY model

The XY model is one of the simplest nontrivial integrable
models. It demonstrates rich phase diagram, and has the
potential to enable the study of new effects. Its Hamiltonian is
as follows:
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where γ is the anisotropy coefficient describing the difference
of interactive strength in the x and y components. λ describes
the magnetic field along the z direction. These two parameters

decide the phases and properties of this model. When γ=0,
it becomes the isotropic XY model (also called XX model).
When γ=1, it recovers the quantum Ising chain. The rela-
tionship between them is shown in figure 1. The shadow areas
are the the corresponding critical regions for the different
models.

The critical regions at λ=1 (blue line) or γ=0 (green
line) are a conformal invariant, where the spectrum of the theory
becomes gapless. They correspond to conformal theories with
conformal charge c=1/2 CFT, and c=1 CFT, respectively.
The XY chain inculdes two types of quantum phase transition,
located at these two lines. The line located at λ=1 is a
transition from a doubly degenerate state (λ<1) to a single
ground state (λ>1). However, when (γ, λ)=(0, 1), it is not
conformal, since the dynamical critical exponent is two [40].

In order to calculate the OTOC of an XY chain, we
should diagonalize its Hamiltonian using the Jordan-Wigner
transformation, and the Bogoliubov transformation. We
set J=1 for convenience. Rewriting the Pauli matrices by
spin operators s = +a aj

x
j j
† , s = -a a ij

y
j j( )† and s =j

z

-a a2 1j j
† , together with Jordan−Wigner transformation =aj

på =
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j
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Figure 1. Critical regions of XY model from [41]. Colored shaded
areas show the corresponding critical region for each model. We
only plot one quadrant due to the existence of symmetry g g -
and l l - .
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where m s=  =j
N

j
z

1 is the parity operator. In order to deal
with the boundary term, we separate the Hamiltonian as
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since their even/odd parity is thereby conserved, respectively.
Now we can use the Fourier transform =ck

å =
- -p-

e ce

N j
N jk

j0
1 i

i 4

, and the Bogoliubov transformation g =k

q q- -c ccos sink k k k
† to complete the diagonalization, thus:
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here l g= - + k kcos sink
2 2 2 1 2[( ) ] is the dispersion of

elementary excitations. The Bogoliubov angle θk satis-
fies q = g

l-
tan 2 .k

k

k
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It has been observed in [33] that given a thermo-
dynamical limit  ¥N , we have á ñ = á ñ = á ñ+ -O O O for
OTOC with both local and nonlocal operators in the Ising
model. Here, the subscript denotes the choice of k± corresp-
onding to even/odd chain length N. We confirm that this
conclusion still holds for the XY model. In this paper we will
use k+ and even N for consistency.

3. Out-of-time-order correlator

Using the diagonalized Hamiltonian, we are now able to
calculate the OTOC of the XY model. We consider the fol-
lowing term:

s s s s= á ñmn
m n m nF l t t t, , 7l l0 0( ) ( ) ( ) ( )

where m n = x y z, , , . The Pauli matrices may be expressed
by fermionic operators in the Majorana representation
Aj=cj

†+cj and = -B c cj j j
† :

s s

s

=  = - 

=-
¢< ¢ ¢ ¢< ¢ ¢A B A A B B

A B

, i ,

. 8

j
x

j j j j j j
y

j j j j j

j
z

j j

( ) ( )
( )

All OTOCs may be expressed as the thermal average
of Majorana fermion sequences. For instance, =F l t,zz ( )
á ñA t B t A B A t B t A Bl l l l0 0 0 0( ) ( ) ( ) ( ) . In terms of the thermo-
dynamical limit, this can be computed using Wick’s theorem,
which turns the calculation of the long sequence into a
combination of two-point correlation functions. We will use
the Pfaffian method to complete the calculations numerically,
with similar steps to [33].

The Pfaffian method [42, 43] can be expressed as

=  F =  FF l t, Pf Det , 9( ) ( ) ( ) ( )

where the matrix Φ is skew-symmetric, i.e. Φii=0 and
Φij=−Φji. This form will be modified if we use ‘double
trick’ to deal with the calculation, in which case the sign of

F(l, t) is not definitely positive. However, it can still be
decided by requiring the ‘continuity’ of the OTOC, which we
will elaborate below. The matrix Φ is constructed in terms of
Majorana correlation functions F = á ñX Xij i j , where Xi is the
ith element inside thermal average function á ñX X ...1 2 .

The basic correlation functions are á ñA t Am n( ) , á ñA t Bm n( ) ,
á ñB t Am n( ) , and á ñB t Bm n( ) , which can be derived if we know
the exact diagonalized form of the Hamiltonian. Their
expressions are shown in appendix.

3.1. OTOC for local operators

OTOCs characterise information spreading and scrambling, in
other words, the delocalization of operators. Since the beha-
vior of many-body localized quantum systems can be
revealed by the local operators, it will be interesting to
study them.

For the XY model, the OTOC with local operators is Czz.
As shown in equation (8), operator s = -A Bj

z
j j is local, since

it consists of fermions located at site j only. Operators s j
x and

s j
y are nonlocal because they are related to all sites of fer-

mions before site j. Combining equations (8) and (9), we
obtain

= - á ñ

= - F

C l t A t B t A B, 1 Re

1 Re Det . 10

zz l l

zz

0 0
2( ) [ ( ( ) ( ) ) ]

( ) ( )

With the help of the Pfaffian trick, we can compute this
quantity numerically. The results in figure 2 illustrate how the

Figure 2. General evolution of Czz with different choices of
parameters in the XY model. We set the system size N=500,
inverse temperature β=0. The space coordinate l ranges from −30
to 30. The time coordinate ranges from 0 to 30. Lighter color denotes
a larger value of Czz, corresponding to stronger delocalization. These
images clearly show how the spreading of the operator is bounded
by a ‘cone structure’.
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parameters (γ, λ) affect the evolution of the OTOC and
the spreading velocity of the butterfly effect. Here, we choose
the system size N=500 and β=0. The lighter color in the
figure denotes stronger C(t). Thus we can observe how the
OTOC spreads.

Several interesting properties can be observed from these
results. Firstly, the cone structure indicates a binding of the
butterfly effect, except in the model where γ=1, λ=0,
which corresponds to the quantum Ising chain without
external magnetic field. The C(t) of this model is always zero,
except for sites l=0 and ±1. This indicates that the operators
do not spread there. This may be further illustrated by con-
sidering the HBC formula as follows:

å=

= + + +

=

¥

W t
t

n
L W

W t H W
t

H H W
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( )
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When γ=1, λ=0, the commutator =W l t V, , 0[ ( ) ( )]
s st ,l

z z
0[ ( ) ] vanishes for all sites except l=0,±1. Therefore

º á ñC l t W l t V, , , 01

2
2( ) ∣[ ( ) ( )]∣ also vanishes.

Secondly, the butterfly effect of the spin chains where
(γ=1, λ=1) and (γ=0, 0<λ<1) always satisfy
vB=1. In the latter case, the OTOC is not influenced by the
magnetic field λ if γ=0 and β=0. Nevertheless, the other
positions display a narrower cone structure. This indicates
that their speed of operator spreading is slower, and that the
velocity vB depends on γ and λ. We can conclude that the
existence of anisotropy will affect the speed of operator
spreading. For models with a weak magnetic field, this will
cause a reduction in speed.

Thirdly, by comparing figure 3 with figure 2, we note that
temperature has a negligible effect on OTOCs with local
operators, except for the model where (γ=0, λ=1). This
model displays vanishing OTOC when the temperature falls
to zero. The reason for this phenomenon is currently unclear.

There is a conjecture that around the wavefront of
information spreading, the wavefront of C(t) can be described
by the universal form (2). To verify this conjecture in the XY
model, we calculate the wavefront of Czz along fixed-velocity
rays. The results are shown in figure 4.

We posit that

l= ´ -C t const v t. exp . 12L( ) ( ( ) ) ( )

If the universal form indeed holds in the XY model, we
should obtain the relation

l
l

=- +
~ - +

C t v t

v v v

Log const.,

, 13
L

L B
1 1 2

[ ( )] ( )
( ) ( ) ( )

as p=1/2 for XY model.
In figure 4, we use time t and Log[Czz] as coordinates,

where the fixed velocity v=1.1, 1.2, and 1.5. Then we use
form −λL(v)t + const. to fit the numerical results. In the
insets, the values of λL(v) are extracted by fitting the num-
erical data. The power law relations are checked. For exam-
ple, in the top picture, the coordinates of three points are (1.1,
0.38), (1.2, 0.54), and (1.5, 1.14), which fits function
l = -v v1.82 0.75L

3 2( ) ( ) quite well. In addition, we can see
from figure 2 that the butterfly velocity of model (γ=0.5,
λ=0.5) is indeed vB≈0.75. The other two figures also
support this relation quite well. We conclude that for OTOC
with local operators, the universal form is supported by XY
model. On the other hand, this result also supports our former
conclusion that vB depends on γ and λ.

Now we consider the time evolution of Czz at fixed sites.
It will tell us exactly how the local operators will behave.
Two meaningful areas must be considered: the early time and
the long time. The results of models at four typical points are
illustrated in figure 5 with sites l=1, 2, 3, 4. It is clear that
for the early time, Czz is vanishing at (γ=1, λ=0), when
l>1. We can also observe power law t4 l−2 at (γ=1,
λ=1) and at t2 l for the remaining models. These behaviors
can be understood by means of the HBC formula. Since t is
small for early time, the description by HBC expansion
remains quite accurate. Note that the lowest order of t, which
makes C(t) nonzero, is decided by the lowest order of Ln(W)
that satisfies ¹L W V, 0n[ ( ) ] . To be specific, the Hamiltonian
of the XY model may be divided into six different types by
selecting different values of γ and λ. They are (1). σ xσ x, (2).
σ yσ y, (3). σ xσ x+σ z, (4). σ yσ y+σ z, (5). σ xσ x+σ yσ y, (6).
σ xσ x+σ yσ y+σ z. For zz OTOCs, the σ xσ x and σ yσ y exhibit
the same behavior. Therefore, we can observe that there are
four kinds of behaviors. We know that type (1) and (2) have
vanishing C(t). For type (3), however, we see that

s s s s
s s s s s
s s s s s s

= ~
~ ~
~ ~ ¼

L H

L H

L H

, ,

, ,

, . 14

z z y x

z y x y y

z y y y z x

1 0 0 0 1

2 0 0 1 0 1

3 0 0 1 0 1 2

( ) [ ]
( ) [ ]
( ) [ ] ( )

Figure 3. The evolution of Czz at zero temperature T=1/β=0
with other configurations, as in figure 2. This shows that only the
model where (γ=0, λ=1) displays vanishing Czz. All other
models are not sensitive to temperature.
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The lowest order s s ¹L , 0n
z

l
z

0[ ( ) ] and s st ,z
l0[ ( ) ] shows

t2 l−1 power law growth. Thus s s= á ñC t t ,z
l

1

2 0
2( ) ∣[ ( ) ]∣

evolves as t4 l−2. The early-time behaviors of other types
may also be checked in a similar fashion. Note that type (5)
and type (6) show the same t2 l growth behavior. This is

because when x and y components exist at the same time, their
behavior will dominate. Overall, we conclude that the early-
time behaviors of Czz can be separated into three types: t4 l−2

at (g l= ¹1, 0), t2 l at g ¹ 1, and when l>1, vanishing
will occur at (γ=1, λ=0).

Figure 4. Fitting of the universal form and numerical data of Czz. We
select three models with different vB to confirm whether the
conjecture holds in the XY model. The dots represent numerical data
from the OTOC along velocity-fixed rays, where v=1.1, 1.2, and
1.5, respectively. The solid lines are fitting forms of −at+b.
Coefficient a is the velocity-dependent Lyapunov exponents λL(v)
that we need to extract. The insets show the three sets of extracted
data fitted by ~ - +v vB

p1( ) . We note that the numerical data fits
quite well.

Figure 5. Time evolution of Czz with four typical models. Yellow,
blue, purple, and green lines correspond to fixed locations l=1, 2,
3, 4, respectively. Czz at (γ=1, λ=0) vanishes for l>1. The
dashed lines are used to show power law fitting. We can see clearly
from the figures that these models show t4 l−2 and t2 l power law
growth at early time, and t−1 decay at late-time, independent of site l.

Figure 6. General evolution of Cxx with different choices of
parameters in the XY model. We set system size N=100, inverse
temperature β=0. Coordinates are given as space ranges from −30
to 30, time ranges from 0 to 30, respectively. Lighter color indicates
a larger value of Cxx, corresponding to stronger delocalization. These
images show similar light cone binding for the different models, but
some differences may be observed, as compared with local operators
inside the light cone: relatively speaking, they appear more
scrambled.
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Next, we examine the late-time aspect of Czz. As
exhibited in figure 5, all models decay as t−1, independent of
γ, λ, site l, and temperature. This behavior may be understood
by means of the stationary phase approximation of fermionic

correlation functions, i.e. when  ¥t , we obtain [33]

p
~ - á ñ

p
C l t A B

t
, 1

2
, 15zz 0 0

2( ) ( )
∣ ∣

( )

here, p is the second derivative of òk with k=π.

3.2. OTOC with nonlocal operators

There are five types of OTOC with nonlocal operators in the
XY model: i.e. Fxx, Fyy, Fxy, Fxz, and Fyz. However, since
the operators s j

x and s j
y change the fermion parity, their

Heisenberg evolution cannot simply obtained from Aj(t) and
Bj(t). Following the method used in [33, 44], we will use the
‘double trick’ to calculate the OTOC. Define quantity

s s s sG º á ñmn
m m n n

- -j t t t, , 16N j j0
2

N N
2 2

( ) ( ( ) ( ) ) ( )

for large enough N. Invoking Lieb-Robinson bound and
cluster property [44], we obtain

s s s sG » á ñá ñ

= - =

mn
m n m n

mn mn mn

- -j t t t

F j t F j t F j t

,

, , , , 17

j N j
2

0
2

2

N N
2 2

( ) ( ( ) ) ( ( ) )

( ) ( ) ( ) ( )

here, = -mn mnF j t F j t, ,( ) ( ) due to mirror symmetry.

Figure 7. Fitting results for the universal form and numerical data of
Cxx. We select three models with different vB ; note that all other
models of OTOC with nonlocal operators have also been verified.
The outside dots represent numerical data obtained by calculating the
OTOC along velocity-fixed rays where v=1.1, 1.2, and 1.5
respectively. The solid lines are fitting forms of −at+b, and a is
the velocity-dependent Lyapunov exponents λL(v) that we need to
extract. The inset shows how these three sets of extracted data fitted
with~ - +v vB

p1( ) as a function of v. We observe that the numerical
data fits quite well.

Table 1. Summary of early-time power law growth of OTOCs with
both local and nonlocal operators in the XY model.

(1, 1) (0, 1) (1, 0) (0, 0)

Cxx t4 l+2 + + -t l2 1 1 l( ) — + + -t l2 1 1 l( )

Cxy t4 l + - -t l2 1 1 l( ) — + - -t l2 1 1 l( )

Cyy t4 l−2 + + -t l2 1 1 l( ) — + + -t l2 1 1 l( )

Cxz t4 l t2 l — t2 l

Cyz t4 l−2 t2 l — t2 l

Czz t4 l−2 t2 l t0(l = 1) t2 l

Figure 8. Late-time behavior of Fxx∣ ∣ at low temperature β=500.
Blue, purple, and green lines correspond to fixed locations l=2, 3,
and 4 respectively. The OTOC is observed to be divergent at
late-time.
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Taking xx OTOC as an example, quantity Γxx( j, t) can be
expressed as

G = 

´ 

¢=
- -

¢ ¢+

¢=
- -

¢ ¢+

j t B t A t

B A

,

. 18

xx j
N j

j j

j
j

j j

1
1

0
1

1
2

N

N

2

2

( ) [( ( ) ( )

( )] ( )

We can use the Pfaffian method to calculate this. We con-
struct a matrix Φxx of dimension 4(N−2j)×4(N−2j).
Then Fxx( j, t) can be calculated as

=  F =  FF j t, Pf Det . 19xx xx xx
1
4( ) ∣ ( )∣ [ ( )] ( )

Since the quantity is doubled, we do not know the sign of it
directly. However, this can be recovered by requiring the
‘continuity’ of F j t,xx ( ). More specifically, there is a critical
rule for all the points on site j and time t: on the premise of
turning least directions, choose closest distance. With this rule
we can check how the curve is finally organized with all the
points from calculation. It should be noted that when j>vt,

F 1xx , due to the existence of cone structure. OTOCs with
other operators may be calculated in the same way. Com-
bining equations (8) and (17) gives

G = 

´ 

¢=
- -

¢ ¢+

¢=
- -

¢ ¢+

j t B t A t

A B

,

, 20

xy j
N j

j j

j
j

j j

1
1

0
1

1
2

N

N

2

2

( ) [( ( ) ( )

( )] ( )

G = á 

´ ñ

¢=
- -

¢ ¢+

- -

j t B t A t

A A B B

,

. 21

xz j
N j

j j

N l N l

1
1

0 2 0 2
2

N
2

( ) [( ( ) ( )

] ( )

Γyy and Γyz can also be constructed in the same way.
The general behavior of Cxx with system size N=100

and β=0 is illustrated in figure 6. Other C(t)s with different
operators show similar behaviors, so we will not show them
here. We can see that while C(t) in figure 3 is vanishing at
(γ=0, λ=1), it does not vanish with nonlocal operators.
From these figures, we see that the butterfly velocity is the
same as for local operators. This indicates that the butterfly
velocity only depends on the model, not the operators, in
OTOC function. Moreover, scrambling is observed for all

sites inside the ‘light cone’. When γ=0, β=0, λ has tiny
effect on the OTOC. The observation of scrambling in
OTOCs with nonlocal operators illustrates their main differ-
ences compared with local operators. This can easily be
understood, since nonlocal operators possess nonlocal infor-
mation about operators, which leads to delocalization once
they spread inside the light cone.

Knowing that the butterfly velocity of the different
operators remains unchanged within the same model, we
further examine whether the universal form regarding wave-
front behavior holds in the case of nonlocal operators. Here
we only show the results Cxx due to space contstraints, but we
have confirmed that all nonlocal C(t) support the conjecture
quite well. The results are illustrated in figure 7. We can
clearly see the fitting results of numerical data in the insets.

The evolution of OTOCs with nonlocal operators can also
be analyzed, including their early-time and long-time power
law behaviors. With regard to early-time observations, detailed
plots are included in figures 9–13, and summarize the results in
table.1. Note that since l=1 is no longer a special case for
nonlocal operators, we only plot results of l=2, 3 , and 4, for
clarity. Here, the sign of the OTOC is no longer a problem;
since C(t) are relatively close to 0 at early time, the sign of
F t∣ ( )∣ must be positive. These results are actually not beyond
our expectation because all of them agree with the HBC
formula. Thus, this aspect requires no further consideration.

It should be noted, however, that long-time behavior is in
some ways more subtle. In [33], the author found that for a
quantum Ising chain at the critical point, F txx∣ ( )∣ exhibits

Figure 9. Early- and late-time evolution of xx OTOC with four sets of parameters and fixed location l=2, 3, and 4 (blue, purple, and green
lines, respectively).

Table 2. Summary of long-time power law growth of OTOC for both
local and nonlocal operators in the XY model.

(1, 1) (0, 1) (1, 0) (0, 0)

Fxx∣ ∣ t−1/4 t−1/2
— t−1/2

Fxy∣ ∣ t−2 t−3/2
— t−1/2

Fyy∣ ∣ t−3 t−1/2
— t−1/2

Fxz∣ ∣ t0 t−2
— t−2

Fyz∣ ∣ t0 t−2
— t−2

Czz t−1 t−1 t0(l=1) t−1
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nontrivial t−1/4 decay at long-time. Here, we confirm this
result, and examine further long-time behaviors in other
regions. The results are shown in figures 9–13 and table 2.
Surprisingly, they show quite different power law behaviors
for different selections of γ and λ. We know that at late-time,
F t∣ ( )∣ with nonlocal operators approach 0, which indicates

that C(t) is appoaching saturation value 1. Thus, the power
law behaviors indicate that different operators will exhibit
different rates of saturation. In particular F txz∣ ( )∣ and F tyz∣ ( )∣,
which describe how nonlocal operators and local operators
interact with each other, show no decay at the critical point.
This observation indicates that for these two kinds of OTOC,

Figure 10. Early- and late-time evolution of xy OTOC with four sets of parameters and fixed location l=2, 3, and 4 (blue, purple, and green
lines, respectively).

Figure 11. Early- and late-time evolution of yy OTOC with four sets of parameters and fixed location l=2, 3, and 4 (blue, purple, and green
lines, respectively).

Figure 12. Early- and late-time evolution of xz OTOC with four sets of parameters and fixed location l=2, 3, and 4 (blue, purple, and green
lines, respectively).
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C(t) will be constant at very long time, and will not grow
at all.

Moreover, our results appear to be independent of loca-
tion l when β=0. However, if we set β to a bigger value, the
pattern of the OTOC becomes quite complex. Some results of
Fxx∣ ∣ are shown in figure 8. Divergence can be observed at late-
time. The reason for this is currently unclear, as we used
numerical method rather than analytical form to complete the
calculations. As a result, we have been unable to obtain a
universal description of the long-time behaviors of OTOCs
with nonlocal operators, but we do hope that our calculations
will contribute towards achieving the final form.

4. Discussion and conclusion

The study of OTOCs in integrable systems is a relatively new
area of research, and may reveal a great deal of interesting
information about how operators evolve in such systems, and
how scrambling happens. In this work we mainly focus on the
behaviors of OTOCs in the XY model, including early time,
long time, and wavefront aspects, together with an exam-
ination of the conjectured universal form (2). Careful calc-
ulation and analysis reveals some interesting points relating to
OTOCs in this system. We found that the butterfly velocity in
the XY model depends on its anisotropy parameter γ and
magnetic field λ, but is independent of the locality of the
operators in the OTOC. Based on this observation, we proved
that for all kinds of OTOC, with all choices of parameters in
the XY model, the conjectured form (2) regarding wavefront
behavior holds true. Therefore, it is indeed a viable descrip-
tion of OTOCs around wavefront (v>vB), at least insofar as
it relates to the XY model.

Furthermore, we conducted a comprehensive study of the
time and space evolution of OTOCs with both local and
nonlocal operators in the XY model. We find some interesting
points about their general behavior: (1) When γ=β=0,
OTOCs with local operators are independent of the external
magnetic field λ; (2) For the noncritical point γ=0, λ=1,
OTOCs with local operators vanish when the temperature
tends to zero. This phenomenon does not occur with other

typical sets of parameters. In addition to these results, the
early-time, and long-time evolution of OTOCs at fixed loca-
tions have also been studied. We found that while early-time
behavior agrees with the power law results of the HBC
formula, the long-time behaviors exhibit nontrivial saturation
rates for different operators and models. These are indepen-
dent of location l when β=0. However, when temperature
decreases, their behaviors become very complex. This is not
easy to analyze by means of numerical calculation. In addi-
tion, OTOCs with both local and nonlocal operators, i.e. Fxz∣ ∣
and Fyz∣ ∣ show t0 at long time. Their long-time evolutions are
constant, rather than approaching 0 as other systems do.

Overall, we have studied many aspects of OTOCs in the
XY model, and provide some evidence to support the con-
jecture regarding information spreading around wavefronts.
Further research is required in order to better understand the
underlying values of these observations and conclusions,
which may be explored in future experiments. Equally, fur-
ther analysis of OTOCs in other systems is also required in
order to arrive at a more profound understanding of their
behaviour in both chaotic and integrable systems.
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Appendix. Majorana two-point correlation functions

Following the definition of the Majorana representation, we
obtain:

á ñ = á + + ñA t A c t c t c c , A1m n m m n n( ) ( ( ) ( ))( ) ( )† †

á ñ = á + - ñA t B c t c t c c , A2m n m m n n( ) ( ( ) ( ))( ) ( )† †

á ñ = á - + ñB t A c t c t c c , A3m n m m n n( ) ( ( ) ( ))( ) ( )† †

á ñ = á - - ñB t B c t c t c c . A4m n m m n n( ) ( ( ) ( ))( ) ( )† †

Figure 13. Early- and late-time evolution of yz OTOC with four sets of parameters and fixed location l=2, 3, and 4 (blue, purple, and green
lines, respectively).
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Next, by means of the Fourier transformation =cj
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